Mathematics Notes for Class 12 chapter 1. Relations and Functions

Relation

If A and B are two non-empty sets, then a relation R from A to B is a subset of $A \times B$.
If $R \subseteq A \times B$ and $(a, b) \in R$, then we say that a is related to b by the relation R, written $a \operatorname{aRb}$.

Domain and Range of a Relation

Let R be a relation from a set A to set B. Then, set of all first components or coordinates of the ordered pairs belonging to R is called : the domain of R , while the set of all second components or coordinates $=$ of the ordered pairs belonging to R is called the range of R .

Thus, domain of $R=\{a:(a, b) \in R\}$ and range of $R=\{b:(a, b) \in R\}$

Types of Relations

(i) Void Relation As $\Phi \subset \mathrm{Ax} A$, for any set A , so Φ is a relation on A , called the empty or void relation.
(ii) Universal Relation Since, $\mathrm{A} x \mathrm{~A} \subseteq \mathrm{~A} x \mathrm{~A}$, so $\mathrm{A} x \mathrm{~A}$ is a relation on A , called the universal relation.
(iii) Identity Relation The relation $\mathrm{I}_{\mathrm{A}}=\{(\mathrm{a}, \mathrm{a}): \mathrm{a} \in \mathrm{A}\}$ is called the identity relation on A .
(iv) Reflexive Relation A relation R is said to be reflexive relation, if every element of A is related to itself.

Thus, $(a, a) \in R, \forall a \in A=R$ is reflexive.
(v) Symmetric Relation A relation R is said to be symmetric relation, iff
$(\mathrm{a}, \mathrm{b}) \in \mathrm{R}(\mathrm{b}, \mathrm{a}) \in \mathrm{R}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
i.e., $\mathrm{a} R \mathrm{~b} \Rightarrow \mathrm{~b} R \mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
$\Rightarrow R$ is symmetric.
(vi) Anti-Symmetric Relation A relation R is said to be anti-symmetric relation, iff $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{a}) \in \mathrm{R} \Rightarrow \mathrm{a}=\mathrm{b}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
(vii) Transitive Relation A relation R is said to be transitive relation, $\operatorname{iff}(a, b) \in R$ and (b, c) $\in R$
$\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}, \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
(viii) Equivalence Relation A relation R is said to be an equivalence relation, if it is simultaneously reflexive, symmetric and transitive on A .
(ix) Partial Order Relation A relation R is said to be a partial order relation, if it is simultaneously reflexive, symmetric and anti-symmetric on A.
(x) Total Order Relation A relation R on a set A is said to be a total order relation on A , if R is a partial order relation on A .

Inverse Relation

If A and B are two non-empty sets and R be a relation from A to B, such that $R=\{(a, b): a \in$ $A, b \in B\}$, then the inverse of R, denoted by R^{-1}, i a relation from B to A and is defined by
$\mathrm{R}^{-1}=\{(\mathrm{b}, \mathrm{a}):(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$

Equivalence Classes of an Equivalence Relation

Let R be equivalence relation in $\mathrm{A}(\neq \Phi)$. Let $\mathrm{a} \in \mathrm{A}$.
Then, the equivalence class of a denoted by [a] or $\{a\}$ is defined as the set of all those points of A which are related to a under the relation R.

Composition of Relation

Let R and S be two relations from sets A to B and B to C respectively, then we can define relation SoR from A to C such that $(a, c) \in S o R \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

This relation SoR is called the composition of R and S.
(i) $\mathrm{RoS} \neq \mathrm{SoR}$
(ii) $(\mathrm{SoR})^{-1}=\mathrm{R}^{-1} \mathrm{oS}^{-1}$
known as reversal rule.

Congruence Modulo m

Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m , if $\mathrm{a}-\mathrm{b}$ is divisible by m and we write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$.
i.e., $a \equiv b(\bmod m) \Leftrightarrow a-b$ is divisible by m.

Important Results on Relation

- If R and S are two equivalence relations on a set A, then $R \cap S$ is also on 'equivalence relation on A .
- The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- If R is an equivalence relation on a set A, then R^{-1} is also an equivalence relation on A.
- If a set A has n elements, then number of reflexive relations from A to A is $2^{n 2-2}$
- Let A and B be two non-empty finite sets consisting of m and n elements, respectively. Then, A x B consists of mn ordered pairs. So, total number of relations from A to B is 2^{nm}.

Binary Operations

Closure Property

An operation * on a non-empty set S is said to satisfy the closure ' property, if

$$
a \in S, b \in S \Rightarrow a * b \in S, \forall a, b \in S
$$

Also, in this case we say that S is closed for *.
An operation * on a non-empty set S, satisfying the closure property is known as a binary operation.
or
Let S be a non-empty set. A function f from $S x S$ to S is called a binary operation on S i.e., f : $S \times S \rightarrow S$ is a binary operation on set S.

Properties

- Generally binary operations are represented by the symbols * , +, ... etc., instead of letters figure etc.
- Addition is a binary operation on each one of the sets $\mathrm{N}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$ and C of natural numbers, integers, rationals, real and complex numbers, respectively. While addition on the set S of all irrationals is not a binary operation.
- Multiplication is a binary operation on each one of the sets N, Z, Q, R and C of natural numbers, integers, rationals, real and complex numbers, respectively. While multiplication on the set S of all irrationals is not a binary operation.
- Subtraction is a binary operation on each one of the sets Z, Q, R and C of integers, rationals, real and complex numbers, respectively. While subtraction on the set of natural numbers is not a binary operation.
- Let S be a non-empty set and $P(S)$ be its power set. Then, the union and intersection on $\mathrm{P}(\mathrm{S})$ is a binary operation.
- Division is not a binary operation on any of the sets N, Z, Q, R and C. However, it is not a binary operation on the sets of all non-zero rational (real or complex) numbers.
- Exponential operation $(a, b) \rightarrow a^{b}$ is a binary operation on set N of natural numbers while it is not a binary operation on set Z of integers.

Types of Binary Operations

(i) Associative Law A binary operation * on a non-empty set S is said to be associative, if (a * b) $* \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$.

Let R be the set of real numbers, then addition and multiplication on R satisfies the associative law.
(ii) Commutative Law A binary operation * on a non-empty set S is said to be commutative, if $a^{*} \mathrm{~b}=\mathrm{b}^{*} \mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{S}$.

Addition and multiplication are commutative binary operations on Z but subtraction not a commutative binary operation, since
$2-3 \neq 3-2$.
Union and intersection are commutative binary operations on the power $P(S)$ of all subsets of set S. But difference of sets is not a commutative binary operation on $P(S)$.
(iii) Distributive Law Let * and o be two binary operations on a non-empty sets. We say that * is distributed over o., if
$\mathrm{a} *(\mathrm{~b} \circ \mathrm{c})=(\mathrm{a} * \mathrm{~b}) \mathrm{o}(\mathrm{a} * \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$ also called (left distribution) and (boc)*a=(b*a) o (c*a), $\forall a, b, c \in S$ also called (right distribution).

Let R be the set of all real numbers, then multiplication distributes addition on R .
Since, $a .(b+c)=a \cdot b+a . c, \forall a, b, c \in R$.
(iv) Identity Element Let * be a binary operation on a non-empty set S. An element e a S, if it exist such that
$a^{*} e=e^{*} a=a, \forall a \in S$.
is called an identity elements of S, with respect to *.
For addition on R , zero is the identity elements in R .
Since, $a+0=0+a=a, \forall a \in R$

For multiplication on $R, 1$ is the identity element in R.
Since, $\mathrm{a} \times 1=1 \times \mathrm{a}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R}$
Let $\mathrm{P}(\mathrm{S})$ be the power set of a non-empty set S . Then, Φ is the identity element for union on P (S) as
$\mathrm{A} \cup \Phi=\Phi \cup \mathrm{A}=\mathrm{A}, \forall \mathrm{A} \in \mathrm{P}(\mathrm{S})$
Also, S is the identity element for intersection on $\mathrm{P}(\mathrm{S})$.
Since, $A \cap S=A \cap S=A, \forall A \in P(S)$.
For addition on N the identity element does not exist. But for multiplication on N the idenitity element is 1 .
(v) Inverse of an Element Let * be a binary operation on a non-empty set 'S' and let 'e' be the identity element.

Let $a \in S$. we say that a^{-1} is invertible, if there exists an element $b \in S$ such that $a * b=b * a=$ e

Also, in this case, b is called the inverse of a and we write, $\mathrm{a}^{-1}=\mathrm{b}$
Addition on N has no identity element and accordingly N has no invertible element.
Multiplication on N has 1 as the identity element and no element other than 1 is invertible.
Let S be a finite set containing n elements. Then, the total number of binary operations on S in $\mathrm{n}^{\mathrm{n} 2}$

Let S be a finite set containing n elements. Then, the total number of commutative binary operation on S is $\mathrm{n}[\mathrm{n}(\mathrm{n}+1) / 2]$.

